AFRL-RV-PS- AFRL-RV-PS-
TR-2014-0168 TR-2014-0168
|

DOSIMETER DESIGN PROGRAM

Craig J. Kief

COSMIAC at UNM
2350 Alamo Avenue SE, Ste 300
Albuquerque, NM 87106

5 Jan 2015

Final Report

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

AIR FORCE RESEARCH LABORATORY
Space Vehicles Directorate

3550 Aberdeen Ave SE

AIR FORCE MATERIEL COMMAND
KIRTLAND AIR FORCE BASE, NM 87117-5776

DTIC COPY
NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs
security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09. This report is available to the general
public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RV-PS-TR-2014-0168 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

/ISIGNED// //SIGNED//

KEITH AVERY JAMES LYKE

Program Manager Tech Advisor, Space Electronics Protection Branch
//SIGNED//

BENJAMIN M. COOK, Lt Col, USAF
Deputy Chief, Spacecraft Technology Division
Space Vehicles Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

Approved for Public Release; Distribution is unlimited

REPORT DOCUMENTATION PAGE OME N BoonoL8s

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)
05-01-2015 Final Report 16 Jul 2013 to 16 Oct 2014
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Dosimeter Design Program
FA9453-13-1-0283
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER
63401F
6. AUTHOR(S) 5d. PROJECT NUMBER
2181
Craig J. Kief 5e. TASK NUMBER
PPM00017001
5f. WORK UNIT NUMBER
EF011499
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER
COSMIAC at UNM
2350 Alamo Avenue SE, Ste 300
Albuquerque, NM 87106
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
Air Force Research Laboratory AFRL/RVSE
Space Vehicles Directorate
3550 Aberdeen Ave., SE 11. SPONSOR/MONITOR’S REPORT
Kirtland AFB, NM 87117-5776 NUMBER(S)
AFRL-RV-PS-TR-2014-0168

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution is Unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The purpose of this research project was to explore the various aspects of dosimeter development with a particular focus on nanosatellites.
The team at the University of New Mexico’s COSMIAC Center created a series of two different dosimeters for space flight. The first
dosimeter was for low earth orbit and as such, didn’t require radiation hardened electronics. The second dosimeter was created to fly in a
much higher environment so it was designed to operate with radiation hardened electronics. The developed dosimeter system is called the
Radiation Hazard Assessment System (RHAS). The RHAS was developed to monitor the radiation environment in a geosynchronous
satellite.

15. SUBJECT TERMS
Radiation testing, Cobalt, Microcontroller

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES Keith Avery

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area

Unclassified Unclassified Unclassified Unlimited 78 code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

(This page intentionally left blank)

Approved for Public Release; Distribution is unlimited

ACKNOWLEDGEMENT

This material is based on research sponsored by Air Force Research Laboratory or the
U.S. Government under agreement number FA9453-13-1-0283. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon."

DISCLAIMER

The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of Air Force Research Laboratory or the U.S. Government.

Approved for Public Release; Distribution is unlimited

Table of Contents

Appendix: Source Files for RHAS

List of Abbreviations, Symbols, and Acronyms

1
2
3.
4
5

Summary ...

Introduction

Methods, Assumptions, and Procedures

Results and

Conclusions

DT E=T 010 £=1<]] o [

Approved for Public Release; Distribution is unlimited

1. Summary

The University of New Mexico (UNM) proposed to develop a series of dosimeter flight
articles for use in future small satellite missions. The Configurable Space Microsystems
Innovations and Applications Center (COSMIAC) aerospace and defense center at
UNM worked on two CubeSats for delivery to the National Aeronautics and Space
Administration (NASA) in 2013 and 2014. Dosimeters provide a critical way to measure
the radiation at various altitudes and orbital inclinations. By understanding the actual
levels, this allows developers of large (and very expensive) satellites to be able to use
less expensive parts that meet minimum requirements for survivability.

2. Introduction

The current trend in nanosatellites is the use of a standard called the CubeSat. The
CubeSat form factor is described with the use of “U” for units. A 1U is 10cm x 10cm x
10cm. A 6U is 10cm x 20cm x 30cm. UNM completed the design build and launch of a
1U CubeSat called Trailblazer (see Figure 1) that was launched in November of 2013
upon the ORS-3 mission. In addition, COSMIAC is working to complete a 6U
spacecraft called ORS Squared for launch in late 2014. This spacecraft is shown in
Figure 2.

Figure 1. Trailblazer

The team said that they would use the provided funds to complete three major goals:

e Design of a dosimeter that is not radiation hardened. The team will work to
create a dosimeter design using parts that are not radiation hardened. This will
allow for a dosimeter that can be used on any inexpensive CubeSat designed for

Approved for Public Release; Distribution is unlimited

1

Low Earth Orbit (LEO). Satellites flown in LEO are often provided with natural
protection from harmful effects normally found in the outer environment. The
Earth’s natural barriers provide protection for the planets occupants as well as
spacecraft that stay close to the Earth’s surface (200km — 400km) from many of
the effects of solar radiation. This means that standard commercial electronics
(which are much cheaper) can often be utilized. Non-hardened parts can often
be an order of magnitude less in cost.

Figure 2. ORS

e Design a dosimeter that is radiation hardened. We will use the funding to create
initial designs for a dosimeter that is built on radiation hardened parts designed
for much higher orbits. There will be no prototype developed under this activity
since the cost for the radiation hardened parts would be prohibitive. Various
chips that are radiation hardened will be purchased for analysis.

e Develop Space Plug-and-play Architecture (SPA) interfaces for the dosimeters.
The Air Force Research Laboratory has created a bus architecture call the SPA.
This design paradigm allows for easy integration of modules into a spacecraft or
other system. The team will work to develop a pathway ahead to make sure that
both versions of the dosimeter could have a SPA interface.

3. Methods, Assumptions, and Procedures

Goal 1: The team created a simple non hardened dosimeter that was completed in time
to be flown on the Trailblazer satellite in November of 2013. Unfortunately, this satellite
was never heard from once on orbit so minimum results from on orbit are available.
However, this design was also evaluated for flight in future COSMIAC satellites. An
example schematic for the board is shown in Figure 3 (full schematics are provided
upon request). We believe there is significant value to this design in its simplicity. We
began work with other schools within the AFRL University Nanosat Program (UNP) to
see if this is a sensor that they would like to fly on their spacecraft. Its design (with its
low power and inexpensive parts) makes it an excellent sensor platform for a UNP
satellite. We can provide any UNP partner with the complete schematics, bill of
materials and board design files.

Approved for Public Release; Distribution is unlimited

2

Figure 3. Board schematic subset

Goal 2: The radiation hardened version of this dosimeter board has been designed.
Although there was no initial intent to actually create the hardware platform, resources
and unforeseen opportunities provided the ability for the team to actually create this
type of platform. We created the board as shown in Figure 4. COSMIAC has
coordinated to find a flight opportunity for this dosimeter board on a Massachusetts
Institute of Technology (MIT)/Lincoln Lab satellite for 2015. Engineering models were
created and provided to integration teams at MIT. All problems that have been
identified so far have been resolved. The schematics for the board are very similar to
the ones shown in Figure 3 for the non-hardened version. The main difference is the
use of parts that can withstand the rigors of deep space. With the assistance of AFRL'’s
Space Weather Center of Excellence, we were able to do flight environmental testing
and qualification. Electromagnetic interference testing identified potential areas of
concern that were addressed by the inclusion of increased metal sheeting. AFRL
Space Vehicles personnel assisted with total dose radiation testing on Kirtland Air Force
Base. The developed dosimeter system was called the Radiation Hazard Assessment
System (RHAS). The RHAS was originally developed to monitor the radiation
environment in a geosynchronous satellite. It incorporates three Teledyne pDos001
dosimeters to measure total ionizing dose resulting from either proton or electron strikes
in the space environment. The dosimeters employ a silicon detector which responds to
energy deposits in the range of 100 kilo-electron volt to 15 Mega-electron volt. The
current pulses from the detector are integrated, and when the resulting charge quanta
reach a threshold equivalent to 14 micro-radians, a counter is incremented. The
counter output is applied to a digital to analog converter which drives the three output
ranges (low, medium, and high) that are progressively scaled by 256 (i.e., medium
range = 256*low range, etc.).

Approved for Public Release; Distribution is unlimited

3

The RHAS instrument shown in Figure 4 was designed to fit in a CubeSat format. The
three dosimeters are located on the top side of the instrument board. In their current
application, a different effective thickness of shielding (not shown here) is applied over
each dosimeter to provide an indication of the energy spectrum of the space radiation.
The instrument incorporates radiation hardened electronics including: an Aeroflex 8051
microcontroller, a Maxwell Electrically Erasable Programmable Read-Only Memory
(EEPROM), Texas Instrument analog to digital converters, and associated support
electronics. Appendix A contains the source code used for this instrument. The
electronics are specified to a hardness level of 1 Mega-radian/Silicon total dose and are
latch-up free. COSMIAC can provide additional radiation testing to higher total dose
levels if required.

Figure 4. Flight model of RadHard Dosimeter

Goal 3: The tricky part of SPA is that the versions changed in the middle of the project.
The original version that existed when this proposal was written was called the Satellite
Data Module (SDM). The new version is called the Satellite System Module (SSM).
SSM is much more mature and of higher quality. Also, this software has now been
released as open source by AFRL. This greatly increases the ability to utilize it for
student projects. The non-hardened version of the dosimeter board is already SPA
compatible (older SDM version). The development of the SPA version of the hardened
board was evaluated and then decided against. Future plans for SPA within the larger
satellite community are very much in a state of flux so it was deemed that doing this
development (at this time) would provide very limited benefit. Evaluation was made on
what needed to be accomplished should this be desired later. Hardware and software
stubs have been put into place to allow for easy integration at a later time.

4. Results and Discussion

The results to date are that the first iterations of the boards have been created.
Ongoing testing has begun but will need to be continued for months to completely
confirm that the systems are operating within acceptable parameters. Since a launch
opportunity has been found, the next iterations will involve the creation of a control
system to be able to interface the dosimeter into a larger orbital platform.

Approved for Public Release; Distribution is unlimited

4

5. Conclusions
The conclusions are that it is possible for an academic institution to be able to create a
radiation detection system on a limited budget that has space community level utility to
achieve the required work for measurements in a space environment.

Approved for Public Release; Distribution is unlimited

5

Appendix: Source Files for RHAS

File List
Here is a list of all files with brief descriptions:

2 5 L O o 7
(D To 1] 1 ¢ =] (=T o 19
[N A= o = (o TN 32
AN 1 X TR 37
= T Q=) o 47
o 4 =T LU 1= o 64
] (@ X T 65

Approved for Public Release; Distribution is unlimited

6

File Documentation

ADC.c File Reference
#include "main.h"

Functions

o tByte read_dosimeter_all (tByte mode2)

o tByte read_dosimeter_low ()

o tByte check_rollover (tByte val, tByte old_val)
e tWord compute_avg (tWord x, tWord xmean)

Variables

tByte tick = 0

tByte mode

tByte count =0

tWord curr_val

tByte k [] = {0, 0O, O, O, 0}
tLong idata dos [3]

INSTRUMENT CONTROL Dosimeter Telemetry Application (Main module) (Version
2.0: Flight Software)

tLong idata dos_zero [3]
tLong idata cal_pre [3]
tLong idata cal_post [3]
tLong idata TickCount
Status1_type idata Statusl
tByte code adc_ch [20]
tByte code adc_ch_mode2 [3][5]
tWord idata ps_15V

tWord idata ps_5V

tWord idata temps [3]

bit RunOnce

bit ReadAlllsRunning

Function Documentation

tByte check_rollover (tByte val, tByte old_val)

Definition at line 325 of file ADC.c.

tWord compute_avg (tWord x, tWord xmean)

Approved for Public Release; Distribution is unlimited

7

Definition at line 338 of file ADC.c.

tByte read_dosimeter_all (tByte mode2)

Definition at line 45 of file ADC.c.

tByte read_dosimeter_low ()

Definition at line 227 of file ADC.c.

Variable Documentation

tByte code adc_ch[20]

Definition at line 104 of file MAIN.C.
tByte code adc_ch_mode2[3][5]

Definition at line 91 of file MAIN.C.

tLong idata cal_post[3]

Definition at line 36 of file MAIN.C.

tLong idata cal_pre[3]

Definition at line 35 of file MAIN.C.

tByte count =0

Definition at line 8 of file ADC.c.

tWord curr_val

Definition at line 9 of file ADC.c.

tLong idata dos[3]

INSTRUMENT CONTROL Dosimeter Telemetry Application (Main module) (Version
2.0: Flight Software)

This code implements the full INSTRUMENT CONTROL dosimeter sensor, including all
message formatting, data processing, and utility functions (ADC, CRC, ...)

Approved for Public Release; Distribution is unlimited

8

Version Rev. 1.0 Created from the code written by Brian Zufelt for the development
board and by code written by me for the EU model.

Chip type : Aeroflex UTMC UT69RH051 Program type : Firmware Core Clock
frequency : 16.129000 MHz

Definition at line 33 of file MAIN.C.

tLong idata dos_zero[3]

Definition at line 34 of file MAIN.C.
tByte k[] = {0, 0, 0, 0, 0}

Definition at line 10 of file ADC.c.

tByte mode

Definition at line 7 of file ADC.c.
tWord idata ps_15V

Definition at line 38 of file MAIN.C.

tWord idata ps_5V

Definition at line 39 of file MAIN.C.
bit ReadAlllsRunning

Definition at line 81 of file MAIN.C.

bit RunOnce

Definition at line 84 of file MAIN.C.

Statusl type idata Statusl

Definition at line 78 of file MAIN.C.

tWord idata temps][3]

Definition at line 40 of file MAIN.C.

Approved for Public Release; Distribution is unlimited

9

tByte tick =0

Definition at line 6 of file ADC.c.

tLong idata TickCount

Definition at line 57 of file MAIN.C.

Approved for Public Release; Distribution is unlimited

10

/I ADC.c
/I This code implements all variants of the ADC functions

#include "main.h"

tByte tick = 0;

tByte mode;

tByte count = 0O;

tWord curr_val;

tByte k[] = {0, 0, 0, 0, 0};

extern tLong idata dos[3];

extern tLong idata dos_zero[3];
extern tLong idata cal_pre[3];
extern tLong idata cal_post[3];
extern tLong idata TickCount;
extern Status1_type idata Status1;
extern tByte code adc_ch[20];
extern tByte code adc_ch_mode2[3][5];
extern tWord idata ps_15V;

extern tWord idata ps_5V;

extern tWord idata temps|[3];
extern bit RunOnce;

extern bit ReadAlllsRunning;

/***

* read_dosimeter_all()

* Reads the actual values of the high, medium, and low channels
* of a dosimeter and stores the results in a 32-bit value (in the

* form: High:12, Med:12, Low:8

* This is done anytime we want the actual values (rather than the
* accumulated dose over a 2-minute period).

* Inputs:

* Formal name Type Purpose

* Return value:

* Type Purpose

* tByte 0 = Success

* -1 = Error: NULL pointer

* -2 = Error: Invalid Dosimeter number

***/

tByte read_dosimeter_all(tByte mode2)

Approved for Public Release; Distribution is unlimited

11

tWord | = 0;
tWord m = 0;
tWord h = 0;
tByte i = 0;

ReadAlllsRunning = 1;

if ((RunOnce == 0)) {
/I Do this once at startup and each mode change
RunOnce = 1;
count = 0;
tick = 0;
¥

/I Burn one ADC operation for each device to set up read channel
sample_adc_fast2(0x00); // Set the first ADCO chan to read DOS1_LOW
sample_adc_fast2(0x15); // Set the first ADC1 chan to read DOS3_LOW

for (i=0;i<16;i++) {
| += sample_adc_fast2(0x00);
¥
sample_adc_fast2(0x01);
for (i=0;i<16;i++) {
m += sample_adc_fast2(0x01);
¥
sample_adc_fast2(0x02);
for (i=0;i<16;i++) {
h += sample_adc_fast2(0x02);
¥
sample_adc_fast2(0x03);
m = (m >>4); // Don't shift h and |

#ifdef DEBUG___
l=m=h=0;
#endif // _ DEBUG__

/I The following (commented out) is what we want to accomplish

/ However, this method involves several long functions calls and

/l requires 454 uS to complete.

/ldos[0] = ((tLong)h << 20) | ((tLong)m << 8) | ((tLong)I >> 4);

/l However, There is not time during the interrupt service routine

I to perform all 9 ADC operations and this calculation (times three).

/I This is a hack that accomplishes the same result and only takes

Approved for Public Release; Distribution is unlimited

12

/1 30.5 uS to complete!! This is the magic of hand coding.

/I The next two lines are commented out because they are offset by
/Il the collection of 16 samples.

/[h=h<<4;

I=1<<4;

*(tByte *)(dos) = *(tByte *)(&h):
*((tByte *)dos+1) = (*(((tByte *)&h)+1) & OxFO) | (*(tByte *)(&m) & OxOF);
*((tByte *)dos+2) = *(((tByte *)&m)+1);

*((tByte *)dos+3) = *(tByte *)(&l);

/I Zero local values
[=m=h=0;

/I Read DOS2_LOW sixteen times
for (i=0;i<16; i++) {
| += sample_adc_fast2(0x03);

sample_adc_fast2(0x04);

/I Read DOS2_MID sixteen times
for (i=0;i<16; i++) {
m += sample_adc_fast2(0x04);

sample_adc_fast2(0x05);

/I Read DOS2_HI sixteen times
for (i=0;i<16;i++) {
h += sample_adc_fast2(0x05);

}
m = (m >>4); // Don't shift h and |

/I If we are in Analysis Mode 2, we need to read subcommutated values
if (mode2 == 1){

sample_adc_fast2(adc_ch_mode2[0][count]); // "Decision Stage 0"
} else {

sample_adc_fast2(0x00);

}
#ifdef _ DEBUG__

h=m=1=0:;
#endif / _DEBUG__

*(tByte *)(dos+4) = *(tByte *)(&h);

Approved for Public Release; Distribution is unlimited

13

*((tByte *)dos+5) = (*(((tByte *)&h)+1) & 0xFO) | (*(tByte *)(&m) & 0xOF);
*((tByte *)dos+6) = *(((tByte *)&m)+1);
*((tByte *)dos+7) = *(tByte *)(&l);

/I Zero local values
l[=m=h=0;
for (i=0;i<16;i++) {
| += sample_adc_fast2(0x15);
}
sample_adc_fast2(0x16);
for (i=0;i<16; i++) {
m += sample_adc_fast2(0x16);

sample_adc_fast2(0x17);
for (i=0;i<16;i++) {
h += sample_adc_fast2(0x17);
}
m = (m >>4); // Don't shift h and |
if (mode2 == 1){
sample_adc_fast2(adc_ch_mode2[1][count]); // "Decision Stage 1"
} else {
sample_adc_fast2(0x15);

}

#ifdef DEBUG__
lI=m =h=0;
#endif / _DEBUG__

*(tByte *)(dos+8) = *(tByte *)(&h);

*((tByte *)dos+9) = (*(((tByte *)&h)+1) & 0xFO0) | (*(tByte *)(&m) & OxOF);
*((tByte *)dos+10) = *(((tByte *)&m)+1);

*((tByte *)dos+11) = *(tByte *)(&l);

/I Perform one "extra" ADC per tick of the System Timer
/I Truncate the current value to 8 bits
if (mode2 == 1) {
curr_val = sample_adc_fast2(adc_ch_mode2[2][count]); // "Decision Stage 2"

}

#ifdef DEBUG
curr_val = 0x0A5A,;
#endif // __ DEBUG__

if (mode2 == 1)
{

Approved for Public Release; Distribution is unlimited

14

/I Read the next 'miscellaneous' channel
switch (count) {
case 0:
ps_15V = compute_avg(curr_val, ps_15V);
break;
case 1:
ps_5V = compute_avg(curr_val, ps_5V);
break;
case 2:
temps[0] = compute_avg(curr_val, temps[0]);
break;
case 3:
temps[1] = compute_avg(curr_val, temps[1]);
break;
case 4:
temps[2] = compute_avg(curr_val, temps[2]);
break;
default:

}

count++;
/l Count goes: 0,1, 2,3,4,0,1,2,3,4, ..
if (count == 5) count = 0; // May be superfluous

}
ReadAlllsRunning = 0;

/l Return no error
return O;

}

/***

* read_dosimeter_low()

* Reads only the value of the low channel of all dosimeters, truncates
* the value into an 8 bit value, checks for a rollover condition, and

* adds the current (truncated) value to the 32-bit value (in the

* form: High:12, Med:12, Low:8

* Inputs:

* None

* Return value:

* Type Purpose

* tByte 0 = Success

***/
Approved for Public Release; Distribution is unlimited

15

tByte read_dosimeter_low()

{

#ifdef _ DEBUG___
#define DUMMY _INC1 321
#define DUMMY_INC2 20
#define DUMMY_INC3 14
static tWord dummy_val1 = 0;
static tWord dummy_val2 = 0;
static tWord dummy_val3 = 0;

#endif // _ DEBUG__

if (RunOnce == 0) {
/I Do this once at startup and each mode change
RunOnce = 1;
count = 0;
tick = 0;
sample_adc_fast2(0x00); // Set the first ADCO chan for present mode
sample_adc_fast2(0x15); // Set the first ADC1 chan for present mode

}

curr_val = sample_adc_fast2(adc_ch[count++]);

#ifdef _ DEBUG___
dummy_val1 = (dummy_val1 + DUMMY_INC1) & (tWord)OxOFFF;
curr_val = dummy_val1,

#endif // _ DEBUG__

curr_val = curr_val >> 4,
if (check_rollover((tByte)curr_val, (tByte)dos[0])) {

dos[0] = ((dos[0] & OxFFFFFFOOQ) | (tLong)curr_val) + 256;
} else {

dos[0] = ((dos[0] & OxFFFFFFO0O) | (tLong)curr_val);

}

curr_val = sample_adc_fast2(adc_ch[count++]);

#ifdef DEBUG
dummy_val2 = (dummy_val2 + DUMMY_INC2) & (tWord)OxOFFF;
curr_val = dummy_val2;
#endif // __DEBUG__

curr_val = curr_val >> 4;
if (check_rollover((tByte)curr_val, (tByte)dos[1])) {
dos[1] = ((dos[1] & OxFFFFFFO0O) | (tLong)curr_val) + 256;

Approved for Public Release; Distribution is unlimited

16

} else {
dos[1] = ((dos[1] & OxFFFFFFO0O0) | (tLong)curr_val);

}

curr_val = sample_adc_fast2(adc_ch[count++]);

#ifdef DEBUG_
dummy_val3 = (dummy_val3 + DUMMY _INC3) & (tWord)OxOFFF;
curr_val = dummy_val3;

#endif // __DEBUG

curr_val = curr_val >> 4;
if (check_rollover((tByte)curr_val, (tByte)dos[2])) {

dos[2] = ((dos[2] & OxFFFFFFO0O0) | (tLong)curr_val) + 256;
} else {

dos[2] = ((dos[2] & OxFFFFFFO0O0) | (tLong)curr_val);

}

/I Truncate the current value to 8 bits
curr_val = sample_adc_fast2(adc_ch[count++]);

#ifdef DEBUG
curr_val = 0x0A5A,;
#endif // __ DEBUG__

/I Read the next 'miscellaneous' channel
switch (tick) {
case 0:
ps_15V = compute_avg(curr_val, ps_15V);
break;
case 1:
ps_5V = compute_avg(curr_val, ps_5V);
break;
case 2:
temps[0] = compute_avg(curr_val, temps[0]);
break;
case 3:
temps[1] = compute_avg(curr_val, temps[1]);
break;
case 4:
temps[2] = compute_avg(curr_val, temps[2]);
break;
default:
/ltick = O;

Approved for Public Release; Distribution is unlimited

17

}
tick++; if (tick == 5) tick = 0;
if (count == 20) count = 0;

// Return no error
return O;

}

tByte check_rollover(tByte val, tByte old_val)
{

/* Rollover condition:

Old value: 11xx xxxx
New value: 00xx Xxxx
*/
if (((old_val & 0xC0) == 0xCO0) && ((val & 0xC0) == 0x00))
return 1; // Rollover detected
else
return O;

}

tWord compute_avg(tWord x, tWord xmean)

{
tWord xtemp;

if (K[tick] == 0) {

k[tick] = 1;
xtemp = x << 4;
} else {

xtemp = xmean >>1; // xtemp = 1/2 * xmean

xtemp += xmean >> 2; // xtemp = 3/4 * xmean

xtemp += xmean >> 3; // xtemp = 7/8 * xmean

xtemp += xmean >> 4; // xtemp = 15/16 * xmean

xtemp += x; /I xtemp = (15/16 * xmean) + x
}

return xtemp;

}

Approved for Public Release; Distribution is unlimited

18

Dosimeter.c File Reference
#include "main.h"

Macros
o #define CAL_PULSE_WIDTH 17

Functions

void Init_INSTRUMENT CONTROL (void)
void SysTimerSetupFast (void)

void SysTimerSetupSlow (void)

void SystemTick (void)

void TSK_DoCal ()

void initialize_normal_mode (void)

void initialize_startup_mode (void)

void ChangeToAnalysisMode2 (void)
void ChangeToAnalysisModel (void)
void TSK_DoADC (void)

Variables

Status1_type idata Statusl

Status2_type idata Status2

MCF_type idata MCF

tLong idata dos [3]

INSTRUMENT CONTROL Dosimeter Telemetry Application (Main module) (Version
2.0: Flight Software)

tLong idata dos_zero [3]
tLong idata cal_pre [3]
tLong idata cal_post [3]
tWord idata dos_livetime [3]
tLong idata TickCount
tLong idata TotalTickCount
tByte idata HourCount

bit TelemetryTick

bit ADC_Start

bit CalRunning

bit ReadAlllsRunning

bit CalMode

bit RunOnce

bit GSE

bit INSTRUMENT CONTROL_Enable
bit Dos1TurnOn

bit Dos2TurnOn

bit Dos3TurnOn

Approved for Public Release; Distribution is unlimited

19

e tlong idata RxTimer

Macro Definition Documentation

#define CAL_PULSE_WIDTH 17

Definition at line 5 of file Dosimeter.c.

Function Documentation

void ChangeToAnalysisModel (void)

Definition at line 279 of file Dosimeter.c.

void ChangeToAnalysisMode2 (void)

Definition at line 269 of file Dosimeter.c.

void Init_INSTRUMENT CONTROL (void)

Definition at line 31 of file Dosimeter.c.

void initialize_normal_mode (void)

Definition at line 210 of file Dosimeter.c.

void initialize_startup_mode (void)

Definition at line 239 of file Dosimeter.c.

void SystemTick (void)

Definition at line 113 of file Dosimeter.c.

void SysTimerSetupFast (void)

Definition at line 57 of file Dosimeter.c.

void SysTimerSetupSlow (void)

Definition at line 85 of file Dosimeter.c.

Approved for Public Release; Distribution is unlimited

20

void TSK_DoADC (void)

Definition at line 289 of file Dosimeter.c.

void TSK_DoCal ()

Definition at line 162 of file Dosimeter.c.

Variable Documentation

bit ADC_Start

Definition at line 47 of file MAIN.C.

tLong idata cal_post[3]

Definition at line 36 of file MAIN.C.

tLong idata cal_pre[3]

Definition at line 35 of file MAIN.C.
bit CalMode

Definition at line 54 of file MAIN.C.
bit CalRunning

Definition at line 53 of file MAIN.C.
tLong idata dos[3]

INSTRUMENT CONTROL Dosimeter Telemetry Application (Main module) (Version
2.0: Flight Software)

This code implements the full INSTRUMENT CONTROL dosimeter sensor, including all
message formatting, data processing, and utility functions (ADC, CRC, ...)

Version Rev. 1.0 Created from the code written by Brian Zufelt for the development
board and by code written by me for the EU model.

Chip type : Aeroflex UTMC UT69RH051 Program type : Firmware Core Clock
frequency : 16.129000 MHz

Approved for Public Release; Distribution is unlimited

21

Definition at line 33 of file MAIN.C.
bit Dos1TurnOn

Definition at line 85 of file MAIN.C.
bit Dos2TurnOn

Definition at line 86 of file MAIN.C.
bit Dos3TurnOn

Definition at line 87 of file MAIN.C.

tWord idata dos_livetime[3]

Definition at line 37 of file MAIN.C.

tLong idata dos_zero[3]

Definition at line 34 of file MAIN.C.
bit GSE

Definition at line 82 of file MAIN.C.

tByte idata HourCount

MCF_type idata MCF

Definition at line 80 of file MAIN.C.
bit ReadAlllsRunning

Definition at line 81 of file MAIN.C.
bit INSTRUMENT CONTROL_Enable

Definition at line 50 of file MAIN.C.

bit RunOnce

Definition at line 84 of file MAIN.C.

Approved for Public Release; Distribution is unlimited

22

tLong idata RxTimer

Definition at line 60 of file MAIN.C.

Statusl type idata Statusl

Definition at line 78 of file MAIN.C.

Status2_type idata Status2

Definition at line 79 of file MAIN.C.

bit TelemetryTick

Definition at line 46 of file MAIN.C.

tLong idata TickCount

Definition at line 57 of file MAIN.C.

tLong idata TotalTickCount

Definition at line 58 of file MAIN.C.

Approved for Public Release; Distribution is unlimited

23

/I Dosimeter.c : Dosimeter-related function implementations
#include "main.h"
#define CAL_PULSE_WIDTH 17

extern Status1_type idata Status1;
extern Status2_type idata Status2;
extern MCF _type idata MCF,;
extern tLong idata dos[3];

extern tLong idata dos_zero[3];
extern tLong idata cal_pre[3];
extern tLong idata cal_post[3];
extern tWord idata dos_livetime[3];
extern tLong idata TickCount;
extern tLong idata TotalTickCount;
extern tByte idata HourCount;
extern bit TelemetryTick;

extern bit ADC_Start;

extern bit CalRunning;

extern bit ReadAlllsRunning;
extern bit CalMode;

extern bit RunOnce;

extern bit GSE;

extern bit INSTRUMENT CONTROL_Enable;
extern bit Dos1TurnOn;

extern bit Dos2TurnOn;

extern bit Dos3TurnOn;

extern tLong idata RxTimer;

void Init_INSTRUMENT CONTROL(void)

{

17654 3210
[—=mmmmm e

P1 = Ox7F; 70111 1111
Il +-+-+-- Dosimeters powered off
/1 L ADCs 1,2 disabled
A et SCLK high
A MISO set for input (high)
[Hmmmmmmmm e MOSI set low
/17654 3210
e

P3 = P3| 0x2C; IXX1X 11XX
/1 +-- RxD controlled by 8051

Approved for Public Release; Distribution is unlimited

24

/l +---- TxD controlled by 8051

/l +omme- CAL set high (disabled)
/1 +ommme- INT_1 set for input (high)
/l Fommmmm e EEPROM_RST_CTRL - leave unchanged
R et MEM_MAP set high (lower 64KB bank selected)
R e RD, WR controlled by 8051 (high)
/ We leave the "Final" bit set for every packet
Final = 1;
}
void SysTimerSetupFast(void)
{

/I Timer 2 is to be used as a system tick timer (in the final system)
/'If we use this timer to generate a tick every 2 msec, that will

/l require a reload value that is 65536 - (0.002 seconds * Tclk).

/l For a 16.129 MHz oscillator, Finst = 16129000/12 = 1.344083 MHz
/I This results in Tinst = 744 ns. Therefore 1 ms = 1,344 instructions.
/I For a system timer interval of M msecs, we need M * 1344,

/I For 4 ms, the reload timer needs to be 65536 - 5376 = 60160.

/I In hexadecimal, this is: OXEBOO

ET2

TR2

T2CON = 0x04; // Load the T2 timer control register:
/I T2 Run on, no mode bits to sweat

T2MOD = 0x00; // Timer mode control

TH2 = 0xEB; // Load the upper byte

RCAP2H = OxEB; // Upper byte of the reload value

TL2 =0x00; // Load the lower byte

RCAP2L = 0x00; //Load the lower byte

0;
0;

/I Enable the T2 interrupt
ET2 =1;

// Start the timer running
TR2 =1;
}

void SysTimerSetupSlow(void)
{

/I Timer 2 is to be used as a system tick timer (in the final system)
/'If we use this timer to generate a tick every 20 msec, that will

/I require a reload value that is 65536 - (0.02 seconds * Tclk).

/I For a 16.129 MHz oscillator, Finst = 16129000/12 = 1.344083 MHz

Approved for Public Release; Distribution is unlimited

25

/I This results in Tinst = 744 ns. Therefore 1 ms = 1,344 instructions.
/I For a system timer interval of M msecs, we need M * 1344,

/I For 32ms, the reload timer needs to be 65536 - 43,008 = 22,528.
/I In hexadecimal, this is: 0x5800

ET2

TR2

T2CON = 0x04; // Load the T2 timer control register:
/I T2 Run on, no mode bits to sweat

T2MOD = 0x00; // Timer mode control

TH2 = 0x58; // Load the upper byte

RCAP2H = 0x58; // Upper byte of the reload value

TL2 =0x00; //Load the lower byte

RCAP2L = 0x00; // Load the lower byte

0;
0;

/I Enable the T2 interrupt
ET2 =1;

// Start the timer running
TR2 =1;
}

void SystemTick(void) interrupt INTERRUPT_T2_Overflow
{

/I Clear the T2 overflow flag

TF2 =0;

/I Increment the tick count
if (INSTRUMENT CONTROL_Enable) return;
if (AnalysisMode == 0) {
TickCount += 2;
TotalTickCount += 2;
} else {
TickCount += 16;
TotalTickCount += 16;

}

/I Increment each livetime counter once every 8.7381333333 minutes.
if (dos1_pwr) {
if ((TotalTickCount & 0xO003FFFF) == 0) // 0000 0000 0000 0011 1111 1111 1111
1111
dos_livetime[0]++;
} else {
dos_livetime[0] = O;

}

Approved for Public Release; Distribution is unlimited

26

if (dos2_pwr) {
if ((TotalTickCount & 0xO003FFFF) == 0) // 0000 0000 0000 0011 1111 1111 1111
1111
dos_livetime[1]++;
} else {
dos_livetime[1] = 0O;
}
if (dos3_pwr) {
if ((TotalTickCount & 0xO003FFFF) == 0) // 0000 0000 0000 0011 1111 1111 1111
1111
dos_livetime[2]++;
} else {
dos_livetime[2] = O;

}

if (CalRunning) return;
if (ReadAlllsRunning) return;
if (TelemetryTick) return;

/I Synchonize pins with status
TDYNO = dos1_pwr;
TDYN1 = dos2_pwr;
TDYN2 = dos3_pwr;

/I This will trigger a new ADC sampling cycle (regardless of the mode)
ADC_Start = 1;

}

void TSK_DoCal()

{
tWord i;
ContentID = CAL_CONTENT;
CalRunning = 1;

/I Transfer the most recent values (in dos[]) to cal_pre][]
RunOnce = 0;

read_dosimeter_all(0);

cal_pre[0] = dos|[0];

cal_pre[1] = dos[1];

cal_pre[2] = dos[2];

/I Run CAL pulses

for (i = 0; i < 50000; i++) {
pulse_cal(CAL_PULSE_WIDTH),

Approved for Public Release; Distribution is unlimited

27

}

/I Set the Cmd history to '0000', VREF Frame to "15V & 5V"
/I Clear CmdRcvd and CmdValid flags.
Status2.value = 0x00;

/I Read the data from the three dosimeters
RunOnce = 0; // Want to start at the beginning of the aux ADC channels

read_dosimeter_all(0);
cal_post[0] = dos[0];
cal_post[1] = dos[1];
cal_post[2] = dos[2];

/I End of Calibration process
CalRunning = 0;

}

/***

* initialize_normal_mode()

*

* This sets up the normal-mode (default) behavior

* It really is a script of several common function calls.

* Inputs: None

* Output: None

* Assumptions: It is assumed that the device is being switched to
* operate in a normal mode (at startup or from some
other mode)

**/

*

void initialize_normal_mode(void)

{
/I Start by initializing the normal status.
/I Status1: Field Value Bit(s)
1l
/l Sample Mode 1 (High) 7
1l Content ID 01 (Normal) 6,5
/l Dosimeter #1 1 (on) 4
1l Dosimeter #2 1 (on) 3
/l Dosimeter #3 1 (on) 2
1l Analysis Mode 0 (Mode1) 1
/l EEPROM Error 1(Good) O
I

Approved for Public Release; Distribution is unlimited

28

}

Status1.value = OxBD;

/I Get out of GSE mode
GSE =0;

/I Set the Cmd history to '0000', VREF Frame to "15V & 5V"
/I Clear CmdRcvd and CmdValid flags.
Status2.value = 0x00;

RunOnce = 0;

/l Perform initial reads of all three dosimeters
read_dosimeter_all(0);

void initialize_startup_mode(void)

{

/[Start by initializing the normal status.

/I Status1: Field Value Bit(s)
I

/l Sample Mode 1 (High) 7
/l Content ID 01 (Normal) 6,5
/l Dosimeter #1 0 (off) 4

1l Dosimeter #2 0 (off) 3

/l Dosimeter #3 0 (off) 2

1l Analysis Mode 0 (Mode1) 1
/l EEPROM Error 1(Good) O
I

Status1.value = OxA1;

/I Get out of GSE mode
GSE =0;

/I Set the Cmd history to '0000', VREF Frame to "15V & 5V"
/I Clear CmdRcvd and CmdValid flags.
Status2.value = 0x00;

#ifdef _ DEBUG___

Status1.value = 0x21;
GSE =1;

#endif // _DEBUG__

}

RunOnce = 0;

Approved for Public Release; Distribution is unlimited

29

void ChangeToAnalysisMode2(void)
{
/I Change to the 16 ms timer interval required for Analysis Mode 2
SysTimerSetupSlow();
TickCount = 0;
dos|[0] = 0;
dos[1] = 0;
dos[2] = 0;
}

void ChangeToAnalysisMode1(void)
{
/I Change to the 2 ms timer interval required for Analysis Mode 1
SysTimerSetupFast();
TickCount = 0;
dos|[0] = 0;
dos[1] = 0;
dos[2] = 0;
}

void TSK_DoADC(void)
{
if (AnalysisMode == 0)
{
if (Dos1TurnOn) {
dos_zero[0] = dos|[0] = 0;
Dos1TurnOn = 0;
}
if (Dos2TurnOn) {
dos_zero[1] = dos[1] = 0;
Dos2TurnOn = 0;

}

if (Dos3TurnOn) {
dos_zero[2] = dos[2] = 0;
Dos3TurnOn = 0;

}

read_dosimeter_low();

} else {

read_dosimeter_all(1);

if (Dos1TurnOn) {
dos_zero[0] = dos[0];
Dos1TurnOn = 0;

}
if (Dos2TurnOn) {
dos_zero[1] = dos[1];

Approved for Public Release; Distribution is unlimited

30

Dos2TurnOn = 0;
¥
if (Dos3TurnOn) {

dos_zero[2] = dos[2];
Dos3TurnOn = 0;

Approved for Public Release; Distribution is unlimited

31

Interface.c File Reference
#include "main.h"

Functions

e tWord crc16 (unsigned char *pData, unsigned char len)

e unsigned int SLIP (unsigned char *packet, unsigned int Packet_len)

e unsigned int UNSLIP (unsigned char *packet, unsigned int Packet_len)

Function Documentation

tWord crcl16 (unsigned char * pData, unsigned char len)

Definition at line 25 of file Interface.c.

unsigned int SLIP (unsigned char * packet, unsigned int Packet_len)

Definition at line 84 of file Interface.c.

unsigned int UNSLIP (unsigned char * packet, unsigned int Packet_len)

Definition at line 122 of file Interface.c.

Approved for Public Release; Distribution is unlimited

32

/***

Project : INSTRUMENT CONTROL Dosimeter (Interface.c)
Version : 0.1 EU (Engineering Unit)

Date :2/20/2013

Author : Brian Zufelt

Company : COSMIAC/UNM

Comments:

This source provides all the functions to format the

output messages through the serial interface.

**/

#include "main.h"

/**

Send a pointer to an array and returns a 16-bit CRC
Check.

Return: 16-bit CRC value

***/

tWord crc16(unsigned char *pData, unsigned char len)
{

unsigned int x = OXFFFF;

unsigned char *p = pData;

unsigned char ch = *p;

while (len) {

x A= ch;
/I Unrolling this loop results in a 27% reduction in processing time.
if (x&1)

X = (x>>1) " 0x8408;
else

x=(x>>1);
if(x&1)

X = (x>>1) " 0x8408;
else

x=(x>>1);
if(x&1)

X = (x>>1) " 0x8408;
else

x=(x>>1);

Approved for Public Release; Distribution is unlimited

33

if(x&1)

x = (x >>1) * 0x8408;
else

X=(x>>1);
if(x&1)

x = (x>>1) * 0x8408;
else

X=(x>>1);
if(x&1)

x = (x>>1) * 0x8408;
else

X=(x>>1);
if(x&1)

x = (x>>1) * 0x8408;
else

X=(x>>1);
if(x&1)

x = (x>>1) * 0x8408;
else

X=(x>>1);
len--; p++; ch = (char)*p;

}

return x;

}

/***

The SLIP Function is Encapsulates the SLIP framing to a given
packet.

Returns: New packet length
NOTE: At least packet length + 2 bytes are required for start/stop

char. Additional size requirements of the buffer depend on the occurance
of FEND or FESC within the data packet.

**/

unsigned int SLIP(unsigned char *packet, unsigned int Packet_len){

inti=0,j=0; /lgeneral
counter
for(i=Packet_len;i>0;i--) { // Shift packet 1 byte to the

right
Approved for Public Release; Distribution is unlimited

34

packet[i] = packet[i-1];
¥

Packet_len += 2;

/lincrease packet size by 2 to add new characters

packet[0] = FEND; /ladd
start char

packet[Packet_len-1] = FEND; /ladd end char

for(i=(Packet_len-2);i>1;i--) Il i<1 because packet[0] has to == FEND and
packet[Packet _len] == FEND
{
if(packet[i] == FEND)

for(j = (Packet_len); j !=i; j--)

packet[j] = packet[j-1];
¥
Packet_len++;
/I increase Packet length size

packet[i] = FESC;
packet[i+1] = TFEND;

}

else if(packet[i] == FESC)

for(j = (Packet_len); j !=i; j--)

packet[j] = packet[j-1];
}
Packet_len++;
Il increase Packet length size
packet[i] = FESC;
packet[i+1] = TFESC;
¥

return Packet_len; /Ireturn new packet length

}

unsigned int UNSLIP(unsigned char *packet, unsigned int Packet_len)

{

inti, j=0;

for (i=0; i < Packet_len - 2; i++) {
if (packet[i] == FESC) {

if (packet[i+1] == TFEND) {

Approved for Public Release; Distribution is unlimited

35

packet[i] = FEND;
for (j = i+1; j < Packet_len -1; j++) {
packet[j] = packet[j+1];

Packet_len--;
} else if (packet[i+1] == TFESC) {
packet[i] = FESC;
for (j = i+1; j < Packet_len -1; j++) {
packet[j] = packet[j+1];

Packet_len--;

} else {
/I Error condition! Should never reach here...
return O;

}
}
}

return Packet_len;

Approved for Public Release; Distribution is unlimited

36

MAIN.C File Reference
#include "main.h"

Functions
e void main (void)

Variables

*tLong idata dos [3] =0

INSTRUMENT CONTROL Dosimeter Telemetry Application (Main module) (Version
2.0: Flight Software)

tLong idata dos_zero [3] =0
tLong idata cal_pre[3] =0
tLong idata cal_post [3]=0
tWord idata dos_livetime [3] =0
tWord idata ps_15V

tWord idata ps_5V

tWord idata temps [3]

tWord idata FrameCounter =0
bit TelemetryTick = 0

bit ADC_Start =0

bit Resetimminent = 0

bit TxEnable = 0

bit INSTRUMENT CONTROL_Enable =0
bit CalRunning =0

bit CalMode = 1

tLong idata TickCount =0
tLong idata TotalTickCount =0
tWord idata PktCnt_Cal =0
tLong idata RxTimer = OxFFFFFFFF
tByte idata XmitLength =0
tByte idata DataBuff [48]

tByte idata AckBuff [14]

tByte idata * pXmitPtr

tByte idata RecvLength = 6
MessageQueue msgQueue
tByte idata RecvBuff [10]

tByte idata * pRecvPtr
Status1_type idata Statusl
Status2_type idata Status2
MCF_type idata MCF

bit ReadAlllsRunning =0

bit GSE =0

bit Poll =0

Approved for Public Release; Distribution is unlimited

37

bit RunOnce =0

bit Dos1TurnOn =0

bit Dos2TurnOn =0

bit Dos3TurnOn =0

tByte code adc_ch_mode2 [3][5]
tByte code adc_ch []

Function Documentation

void main (void)

Definition at line 108 of file MAIN.C.

Variable Documentation

tByte idata AckBuff[14]

Definition at line 65 of file MAIN.C.

tByte code adc_ch[]

Initial value:={0x03, 0x00, 0x10, O0x15, 0x03, O0x06, 0x15,
0x00, 0x03, 0x00, 0x11, 0Ox15, O0x03, 0x00,
0x12, 0x15, 0x03, 0x00, 0x14, 0x15}

Definition at line 104 of file MAIN.C.

tByte code adc_ch_mode2[3][5]
Initial value:=

{ 0x00, 0x06, 0x00, 0x00, 0x00 },
{ 0x10, Ox15, Ox11, 0x12, 0x14 },
{ 0x15, 0x00, 0x15, 0x15, 0x15 }

}
Definition at line 91 of file MAIN.C.

bit ADC_Start =0

Definition at line 47 of file MAIN.C.

tLong idata cal_post[3] =0

Definition at line 36 of file MAIN.C.
Approved for Public Release; Distribution is unlimited

38

tLong idata cal_pre[3] =0

Definition at line 35 of file MAIN.C.
bit CalMode =1

Definition at line 54 of file MAIN.C.
bit CalRunning =0

Definition at line 53 of file MAIN.C.
tByte idata DataBuff[48]

Definition at line 64 of file MAIN.C.
*tLong idata dos[3] =0

INSTRUMENT CONTROL Dosimeter Telemetry Application (Main module) (Version
2.0: Flight Software)

This code implements the full INSTRUMENT CONTROL dosimeter sensor, including all
message formatting, data processing, and utility functions (ADC, CRC, ...)

Version Rev. 1.0 Created from the code written by Brian Zufelt for the development
board and by code written by me for the EU model.

Chip type : Aeroflex UTMC UT69RH051 Program type : Firmware Core Clock
frequency : 16.129000 MHz

Definition at line 33 of file MAIN.C.
bit Dos1TurnOn =0

Definition at line 85 of file MAIN.C.
bit Dos2TurnOn =0

Definition at line 86 of file MAIN.C.
bit Dos3TurnOn =0

Definition at line 87 of file MAIN.C.

Approved for Public Release; Distribution is unlimited

39

tWord idata dos_livetime[3] =0

Definition at line 37 of file MAIN.C.

tLong idata dos_zero[3] =0

Definition at line 34 of file MAIN.C.

tWord idata FrameCounter =0

Definition at line 43 of file MAIN.C.
bit GSE=0

Definition at line 82 of file MAIN.C.
MCF_type idata MCF

Definition at line 80 of file MAIN.C.

MessageQueue msgQueue

Definition at line 68 of file MAIN.C.
tWord idata PktCnt_Cal =0

Definition at line 59 of file MAIN.C.
bit Poll =0

Definition at line 83 of file MAIN.C.

tByte idata* pRecvPtr

Definition at line 75 of file MAIN.C.
tWord idata ps_15V

Definition at line 38 of file MAIN.C.
tWord idata ps_5V

Definition at line 39 of file MAIN.C.

Approved for Public Release; Distribution is unlimited

40

tByte idata* pXmitPtr

Definition at line 66 of file MAIN.C.
bit ReadAlllsRunning =0

Definition at line 81 of file MAIN.C.
tByte idata RecvBuff[10]

Definition at line 73 of file MAIN.C.
tByte idata RecvLength =6

Definition at line 67 of file MAIN.C.

bit Resetimminent =0

Definition at line 48 of file MAIN.C.
bit INSTRUMENT CONTROL_Enable =0

Definition at line 50 of file MAIN.C.
bit RunOnce =0

Definition at line 84 of file MAIN.C.
tLong idata RxTimer = OXFFFFFFFF

Definition at line 60 of file MAIN.C.

Statusl type idata Statusl

Definition at line 78 of file MAIN.C.
Status2_type idata Status2

Definition at line 79 of file MAIN.C.
bit TelemetryTick =0

Definition at line 46 of file MAIN.C.

Approved for Public Release; Distribution is unlimited

41

tWord idata temps][3]

Definition at line 40 of file MAIN.C.

tLong idata TickCount =0

Definition at line 57 of file MAIN.C.

tLong idata TotalTickCount =0

Definition at line 58 of file MAIN.C.
bit TxEnable =0

Definition at line 49 of file MAIN.C.
tByte idata XmitLength =0

Definition at line 63 of file MAIN.C.

N

/"\brief INSTRUMENT CONTROL Dosimeter Telemetry Application (Main module)
N (Version 2.0: Flight Software)

N

/! This code implements the full INSTRUMENT CONTROL dosimeter sensor,
/' including all message formatting, data processing, and

/! utility functions (ADC, CRC, ...)

//l khkkhkhkhkhhhhkhkhhkhhhkhkhhhhhkhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhkhkhhhkhkkkkkk

/' Version Rev.

/'1.0 Created from the code written by Brian Zufelt for

N the development board and by code written by me

N for the EU model.

//' kkhkkkkkkkkkkkkkkkkkhkkkkkkkkhhkhkhhkkkkkkkhkkkkkkkkkkkkkkk

/' Chip type : Aeroflex UTMC UT69RH051
/' Program type : Firmware
/' Core Clock frequency : 16.129000 MHz

//' ***/

Approved for Public Release; Distribution is unlimited

42

/***

Project : INSTRUMENT CONTROL Dosimeter Telemetry Application (Main.c)
Version : 1.0 FH (Flight Hardware)

Date :07/18/2013

Company : COSMIAC/UNM

***/

#include "main.h" /I Global header

/* Global storage for measurements */

tLong idata dos[3] = 0O; /I Contains the actual dosimeter values

tLong idata dos_zero[3] = 0; // Baseline values for the three dosimeters

tLong idata cal_pre[3] = 0; // Contains the values at power_on.

tLong idata cal_post[3] = 0; // Contains the intermediate values (dos[] + dose since last

update)

tWord idata dos_livetime[3] = 0; // Total running time for each dosimeter.
tWord idata ps_15V; // 15V line

tWord idata ps_5V; /I 5V line

tWord idata temps[3]; /l Temperatures

/I Global frame counter
tWord idata FrameCounter = 0; // The frame counter - must be zero'ed out on
reset/power-up

/I Command/Status

bit TelemetryTick = 0; // This will be '1' whenever we are sending telemetry data

bit ADC_Start = 0; /l This is a flag set by the SysTimerXXX interrupt routine.

bit Resetimminent = 0; /I This will likely not be used (the "Reset Imminent" cmd is
not implemented)

bit TxEnable = 0; /I If this is clear, we continue to measure/accumulate dose, but
don't report

bit INSTRUMENT CONTROL_Enable = 0; /I This flag keeps the instrument from

starting to run until the first command

/I Calibration interval counter

bit CalRunning = 0; /['1"if the CAL pulses are being generated
bit CalMode = 1; /I CalMode = 1 --> perform weekly calibration and reset
dosimeters

/I Tracking time for interrupt interval

tLong idata TickCount = 0; // Counts 2ms intervals to trigger events
tLong idata TotalTickCount = 0;

tWord idata PktCnt_Cal = 0;

Approved for Public Release; Distribution is unlimited

43

tLong idata RxTimer = OxFFFFFFFF; // Initialize to high end of range

/I Serial comm buffers

tByte idata XmitLength = 0; // If this value is non-zero, there is data to transmit
tByte idata DataBuff[48]; // Data block containing chars to be xmit'd

tByte idata AckBuff[14]; // Data block for Ack packet chars

tByte idata *pXmitPtr; // Pointer for iterating through the xmit buffer

tByte idata RecvLength = 6; // Command receive length

MessageQueue msgQueue; /I Contains the pointers and lengths for data / ack
packets

#ifdef _ DEBUG___
tByte idata RecvBuff[10] = {0x56, 0x11, 0xA2, Ox7E, 0x44, 0x52, 0x00, 0x00, 0x00,
0x00%};
#else
tByte idata RecvBuff[10];
#endif // _ DEBUG__
tByte idata *pRecvPtr;

/l Status bytes and Command/Status flags
Status1_type idata Status1;
Status2_type idata Status2;
MCF_type idata MCF,;

bit ReadAlllsRunning = 0;
bit GSE = 0;

bit Poll = 0;

bit RunOnce = 0;

bit Dos1TurnOn = O;

bit Dos2TurnOn = 0;

bit Dos3TurnOn = 0;

/[This 2D array contains the ADC dev/ch sequence for Analysis Mode 2
/I (The first index is the "stage", the second is where we are in <count>)
tByte code adc_ch_mode2[3][5] =
{1 (1) 2) 3) (4))
{ 0x00, 0x06, 0x00, 0x00, 0x00 }, // "Stage 0"
{0x10, 0x15, 0x11, 0x12, Ox14 }, // "Stage 1"
{ 0x15, 0x00, 0x15, 0x15, 0x15} // "Stage 2"

I3

/[This 1D array contains the ADC dev/ch sequence for Analysis Mode 1
Il (There are four measurements per timer tick:

/! Dos1Low,
Il Dos2Low,
Il Dos3Low,

Approved for Public Release; Distribution is unlimited

44

I one of {+15V, +5V, Temp1, Temp2, Temp3}

tByte code adc_ch[] = { 0x03, 0x00, 0x10, 0x15, 0x03, 0x06, 0x15,
0x00, 0x03, 0x00, 0x11, 0x15, 0x03, 0x00,
0x12, 0x15, 0x03, 0x00, 0x14, 0x15};

void main(void){

Init INSTRUMENT CONTROLY(); /I Configure pins for start-up:

SysTimerSetupFast(); /I Start the system tick timer
com_initialize (); /[initialize interrupt driven serial 1/0
com_baudrate (4800); /Il setup for 4800 baud

pXmitPtr = (tByte *)DataBuff; // Initialize the transmit pointer
pRecvPtr = (tByte *)RecvBuff; // Initialize the receive pointer
msgQueue.nDatalLength = 0;

msgQueue.nAckLength = 0;

#ifdef _ DEBUG___
FakeData();
#endif // _ DEBUG__

/I Enable the T2 interrupt, start the timer, and enable global interrupts
ET2 =1;
TR2 =1;

EA =1,

/I Make sure the instrument comes up in an inactive, controlled state
initialize_startup_mode();

TickCount = 0;

RunOnce = 0;

// Debug only
#ifdef _ DEBUG___

[lprintf("Write this to the serial port...\r\n");
#endif // _ DEBUG__

#ifdef _ DEBUG___
RecvLength = 6; // Length of received message...
TSK_DoCmdParse();

#endif // _ DEBUG__

while (1) {
/I This is the main execution loop that cycles forever.

/I 1. Check if it's time to create a new telemetry packet.
TelemetryTick = TimeToXmitTelemetry();

Approved for Public Release; Distribution is unlimited

45

if (TelemetryTick == 1) {
PktCnt_Cal++;
if ((PktCnt_Cal >= PACKETS_PER_WEEK) && (CalMode)) {
PktCnt_Cal = 0;
TSK_DoCal();
TickCount = 0;

}
TSK_DoPacketFormat();
}

// Start the ADC process

if (ADC_Start == 1) {
ADC_Start = 0;
TSK_DoADC();

}

/Il 2. Check if there are characters to transmit.
/I If so, attempt to print one character (non-blocking)
if (XmitLength !=0)) {
/I In the process of sending a message
if (lcom_putchar(*(pXmitPtr))) {
/I A character was successfully placed into the buffer
pXmitPtr++;
XmitLength--;

} else {

/I Check for waiting telemetry or ACK packets.
QueueWaitingMessage();

}

/I 3. Process characters as they arrive (This is very fast!)
TSK_ProcessRxChars();

// End of while(1) loop ...

Approved for Public Release; Distribution is unlimited

46

Packet.c File Reference
#include "main.h"

Functions

void TSK_ProcessRxChars (void)

void TSK_DoCmdParse (void)

void TSK_DoAckPacket (void)

void TSK_DoNakPacket (tByte nak_code)
void TSK_DoPacketFormat (void)

char * addChar (char ch, const char *ptr)
char * addWord (tWord val, const char *ptr)
char * addLong (tLong val, const char *ptr)
tByte TimeToXmitTelemetry (void)

void QueueWaitingMessage (void)

Variables

MCF_type idata MCF
tLong idata dos [3]

INSTRUMENT CONTROL Dosimeter Telemetry Application (Main module) (Version
2.0: Flight Software)

tLong idata dos_zero [3]
tLong idata cal_pre [3]
tLong idata cal_post [3]
tWord idata dos_livetime [3]
tWord idata ps_15V

tWord idata ps_5V

tWord idata temps [3]
tWord idata FrameCounter
bit CalMode

tLong idata TickCount
tLong idata TotalTickCount
bit TelemetryTick

tByte idata XmitLength
tByte idata DataBuff [48]
tByte idata AckBuff [14]
Status1_type idata Statusl
Status2_type idata Status2
tByte idata * pXmitPtr
tByte idata * pRecvPtr
tByte idata RecvLength
tByte idata RecvBuff [10]
bit GSE

bit Poll

bit TxEnable

Approved for Public Release; Distribution is unlimited

47

bit INSTRUMENT CONTROL_Enable
bit Resetimminent

bit Dos1TurnOn

bit Dos2TurnOn

bit Dos3TurnOn

tLong idata RxTimer

tWord idata PktCnt_Cal
MessageQueue msgQueue

Function Documentation

char* addChar (char ch, const char * ptr)

Definition at line 455 of file Packet.c.

char* addLong (tLong val, const char * ptr)

Definition at line 468 of file Packet.c.

char* addWord (tWord val, const char * ptr)

Definition at line 462 of file Packet.c.

void QueueWaitingMessage (void)

Definition at line 516 of file Packet.c.

tByte TimeToXmitTelemetry (void)

Definition at line 474 of file Packet.c.

void TSK_DoAckPacket (void)

Definition at line 265 of file Packet.c.

void TSK_DoCmdParse (void)

Definition at line 108 of file Packet.c.

void TSK_DoNakPacket (tByte nak_code)

Definition at line 283 of file Packet.c.

Approved for Public Release; Distribution is unlimited

48

void TSK_DoPacketFormat (void)

Definition at line 303 of file Packet.c.

void TSK_ProcessRxChars (void)

Definition at line 42 of file Packet.c.

Variable Documentation

tByte idata AckBuff[14]

Definition at line 65 of file MAIN.C.

tLong idata cal_post[3]

Definition at line 36 of file MAIN.C.

tLong idata cal_pre[3]

Definition at line 35 of file MAIN.C.
bit CalMode

Definition at line 54 of file MAIN.C.
tByte idata DataBuff[48]

Definition at line 64 of file MAIN.C.
tLong idata dos[3]

INSTRUMENT CONTROL Dosimeter Telemetry Application (Main module) (Version
2.0: Flight Software)

This code implements the full INSTRUMENT CONTROL dosimeter sensor, including all
message formatting, data processing, and utility functions (ADC, CRC, ...)

Version Rev. 1.0 Created from the code written by Brian Zufelt for the development
board and by code written by me for the EU model.

Chip type : Aeroflex UTMC UT69RH051 Program type : Firmware Core Clock
frequency : 16.129000 MHz

Approved for Public Release; Distribution is unlimited

49

Definition at line 33 of file MAIN.C.
bit Dos1TurnOn

Definition at line 85 of file MAIN.C.
bit Dos2TurnOn

Definition at line 86 of file MAIN.C.
bit Dos3TurnOn

Definition at line 87 of file MAIN.C.

tWord idata dos_livetime[3]

Definition at line 37 of file MAIN.C.

tLong idata dos_zero[3]

Definition at line 34 of file MAIN.C.

tWord idata FrameCounter

Definition at line 43 of file MAIN.C.
bit GSE

Definition at line 82 of file MAIN.C.
MCF_type idata MCF

Definition at line 80 of file MAIN.C.

MessageQueue msgQueue

Definition at line 68 of file MAIN.C.

tWord idata PktCnt_Cal

Definition at line 59 of file MAIN.C.
bit Poll

Approved for Public Release; Distribution is unlimited

50

Definition at line 83 of file MAIN.C.

tByte idata* pRecvPtr

Definition at line 75 of file MAIN.C.
tWord idata ps_15V

Definition at line 38 of file MAIN.C.
tWord idata ps_5V

Definition at line 39 of file MAIN.C.
tByte idata* pXmitPtr

Definition at line 66 of file MAIN.C.
tByte idata RecvBuff[10]

Definition at line 73 of file MAIN.C.

tByte idata RecvLength

Definition at line 67 of file MAIN.C.

bit Resetimminent

Definition at line 48 of file MAIN.C.
bit INSTRUMENT CONTROL_Enable

Definition at line 50 of file MAIN.C.

tLong idata RxTimer

Definition at line 60 of file MAIN.C.

Statusl type idata Statusl

Definition at line 78 of file MAIN.C.

Status2_type idata Status2

Approved for Public Release; Distribution is unlimited

51

Definition at line 79 of file MAIN.C.

bit TelemetryTick

Definition at line 46 of file MAIN.C.
tWord idata temps]3]

Definition at line 40 of file MAIN.C.

tLong idata TickCount

Definition at line 57 of file MAIN.C.

tLong idata TotalTickCount

Definition at line 58 of file MAIN.C.
bit TxEnable

Definition at line 49 of file MAIN.C.

tByte idata XmitLength

Definition at line 63 of file MAIN.C.

Approved for Public Release; Distribution is unlimited

52

I/l Packet.c
/I This file contains the code for assembling packets for transmittal to ARCS

#include "main.h"

extern MCF _type idata MCF;
extern tLong idata dos[3];

extern tLong idata dos_zero[3];
extern tLong idata cal_pre[3];
extern tLong idata cal_post[3];
extern tWord idata dos_livetime[3];
extern tWord idata ps_15V;

extern tWord idata ps_5V;

extern tWord idata temps|[3];
extern tWord idata FrameCounter;
extern bit CalMode;

extern tLong idata TickCount;
extern tLong idata TotalTickCount;
extern bit TelemetryTick;

extern tByte idata XmitLength;
extern tByte idata DataBuff[48];
extern tByte idata AckBuff[14];
extern Status1_type idata Status1;
extern Status2_type idata Status2;
extern tByte idata *pXmitPtr;
extern tByte idata *pRecvPtr;
extern tByte idata RecvLength;
extern tByte idata RecvBuff[10];
extern bit GSE;

extern bit Poll;

extern bit TxEnable;

extern bit INSTRUMENT CONTROL_Enable;
extern bit Resetimminent;

extern bit Dos1TurnOn;

extern bit Dos2TurnOn;

extern bit Dos3TurnOn;

extern tLong idata RxTimer;
extern tWord idata PktCnt_Cal;
extern MessageQueue msgQueue;

/I UART task functions
void TSK_ProcessRxChars(void)

/I Create the state variable and initialize it to starting state
static RxStateType state = WaitingFirstFEND;
int rx_char;

Approved for Public Release; Distribution is unlimited

53

/I if ((TickCount - RxTimer) > 1000)

I A

/I I/l Recover from a receive timeout - reset to idle state
/I state = WaitingFirstFEND;

/I RecvLength = 0;

/I pRecvPtr = RecvBuff;

/I RxTimer = OxFFFFFFFF;

/I return;

I}

/l Check comm port for a character (-1 = empty)
rx_char = com_getchar();
if (rx_char == -1) return;

/lcom_putchar(rx_char);

switch(state)
{
case WaitingFirstFEND:
if (((tByte)rx_char) == FEND)
{

state = WaitingFirstNonFEND;
RecvLength = 0;
RxTimer = TickCount;

}

return;

break;

case WaitingFirstNonFEND:
if ((tByte)rx_char != FEND)

state = ReadingChars;
*(pRecvPtr) = (tByte)rx_char;
pRecvPtr++;
RecvLength++;

}

return;

break;

case ReadingChars:
if ((tByte)rx_char == FEND)

{
state = WaitingFirstFEND;

RxTimer = OXFFFFFFFF;
/l Found the end of the command - now process it

Approved for Public Release; Distribution is unlimited

54

CmdFound = 1;
TSK_DoCmdParse();

} else {
*(pRecvPtr) = (tByte)rx_char;
pRecvPtr++;
RecvLength++;

}

return;

break;

default:
break;

}
}

void TSK_DoCmdParse(void)
{

tByte oldMode;

tByte NAK_code = 0x00;

if (AnalysisMode == 0) {
oldMode = 0;

} else {
oldMode = 1;

}

/I Ensure that the pointer is initialized to the receive buffer
pRecvPtr = RecvBuff;

/I "Unescape" the string
RecvLength = UNSLIP(pRecvPtr, RecvLength);

/I Check the CRC field

pRecvPtr += (RecvLength - 2);

if (crc16(RecvBuff, RecvLength-2) = *((tWord *)pRecvPtr)) {
NAK code = 0x03;
goto bad_exit;

pRecvPtr = RecvBuff; // Return the pointer to the start of the message.
/I Check the destination address
if (*(pRecvPtr) I= INSTRUMENT CONTROL_ADDRESS) {

NAK code = 0x04;
goto bad_exit;

}

Approved for Public Release; Distribution is unlimited

55

/I Check the source address
pRecvPtr++;
if (*(pRecvPtr) = ARCS_ADDRESS) {
NAK _code = 0x05;
goto bad_exit;

}
/I Assertion: The command is from the avionics
1l host and is intended for INSTRUMENT CONTROL

// Parse the message control field
pRecvPtr++;
Poll = (*(pRecvPtr) & 0x80) >> 7;
B_bit = (*(pRecvPtr) & 0x40) >> 6; // Pass through unaltered - we don't use this bit.
CmdCode = (*(pRecvPtr) & Ox1F);
Cmd = (*(pRecvPtr) & Ox0F);
if (Cmd == 0x01) { // "Instrument Reset" command (1 payload byte)
if (RecvLength == 6) {
INSTRUMENT CONTROL_Enable = 1;
pRecvPtr++;
if (*(pRecvPtr) !=0) { // Reset is imminent - perform an orderly shutdown
Resetlmminent = 1;
}else {
Resetlmminent = 0;
}
goto good_exit;
} else {
NAK code = 0x02;
goto bad_exit;
¥
} else if (Cmd == 0x02) { // "Configure" command (1 payload byte)
if (RecvLength == 6) {
INSTRUMENT CONTROL_Enable = 1;
CmdValid = 1;
pRecvPtr++;
GSE = (*(pRecvPtr) & 0x80) >> 7;
Status1.fields.SampleMode = (*(pRecvPtr) & 0x40) >> 6;

if (!CalMode) && (((*(pRecvPtr) & 0x20) >> 5) == 1)) {
/I If CalMode goes from 0 --> 1, force a CAL
PktCnt_Cal = PACKETS_PER_WEEK;
TickCount = OxFFFFO0000;

}
CalMode = (*(pRecvPtr) & 0x20) >> 5;
TxEnable = (*(pRecvPtr) & 0x10) >> 4;

Approved for Public Release; Distribution is unlimited

56

/I Test for dos1_pwr switching from off to on
Dos1TurnOn = dos1_pwr;
dos1_pwr = (*(pRecvPtr) & 0x08) >> 3;
if ((dos1_pwr) && (!Dos1TurnOn))
Dos1TurnOn = 1;
else
Dos1TurnOn = 0;

/I Test for dos2_pwr switching from off to on
Dos2TurnOn = dos2_pwr;
dos2_pwr = (*(pRecvPtr) & 0x04) >> 2;
if ((dos2_pwr) && (IDos2TurnOn))
Dos2TurnOn = 1;
else
Dos2TurnOn = 0;

/I Test for dos3_pwr switching from off to on
Dos3TurnOn = dos3_pwr;
dos3_pwr = (*(pRecvPtr) & 0x02) >> 1;
if ((dos3_pwr) && (IDos3TurnOn))
Dos3TurnOn = 1,
else
Dos3TurnOn = 0;

AnalysisMode = (*(pRecvPtr) & 0x01);
/I Test to see if the analysis mode has changed ...
/I'If it has, need to change the system timer tick interval
if ((oldMode == 0) && (AnalysisMode == 1))
ChangeToAnalysisMode2();
if ((oldMode == 1) && (AnalysisMode == 0))
ChangeToAnalysisMode1();

goto good_exit;

} else {
NAK code = 0x02;
goto bad_exit;

}

} else if (Cmd == 0x03) { // "Normal mode" command (0 payload bytes)

if (RecvLength == 5) {
/I Initialize the normal mode of operation
INSTRUMENT CONTROL_Enable = 1;
/I Set the TurnOn flag for each dosimeter that was off
if ('dos1_pwr) Dos1TurnOn = 1;
if (/dos2_pwr) Dos2TurnOn = 1;
if ('dos3_pwr) Dos3TurnOn = 1;
initialize_normal_mode();
/I Change to faster timer tick

Approved for Public Release; Distribution is unlimited

57

if (oldMode == 1)
ChangeToAnalysisMode1();

goto good_exit;

} else {
NAK code = 0x02;
goto bad_exit;

}

}

else {
NAK _code = 0x01;
goto bad_exit;

}

/I Don't often use GOTOs, but sometimes they are useful
bad_exit:
CmdValid = 0;
Ack = 0;
if (Poll)
TSK_DoNakPacket(NAK_code);
goto exit_func;

good_ exit:
CmdValid = 1;
Ack = 1;
if (Poll)
TSK_DoAckPacket();
Ack = 0;

exit_func:
pRecvPtr = (iByte *)RecvBuff;
return;

}

/I ACK/NAK packet formatting functions

void TSK_DoAckPacket(void)

{
/[Start the data insertion point just past the MCF
char *ptr = AckBuff + 3;
tWord crc;

/I Pre-populate the values that are always the same
AckBuff[0] = 0x11; /l Destination address (host(ARCS) = 0x11)
AckBuff[1] = 0x56; I/ Source address (INSTRUMENT CONTROL = 0x56)
AckBuff[2] = MCF.value; // Message Control Field =

/I OxAOQ for most NSP telemetry packets
crc = crc16((char *)(AckBuff), 3);

Approved for Public Release; Distribution is unlimited

58

ptr = addWord(crc, ptr); // Bytes 4,5

msgQueue.nAckLength = SLIP(AckBuff, ptr - AckBuff);
return ;

}

void TSK_DoNakPacket(tByte nak_code)

{
/[Start the data insertion point just past the MCF
char *ptr = AckBuff + 4;
tWord crc;

/I Pre-populate the values that are always the same
AckBuff[0] = Ox11; // Destination address (host(ARCS) = 0x11)
AckBuff[1] = 0x56; I/l Source address (INSTRUMENT CONTROL = 0x56)
AckBuff[2] = MCF.value; // Message Control Field =

/I OxXAOQ for most NSP telemetry packets
AckBuff[3] = nak_code;
crc = crc16((char *)(AckBuff), 4);

ptr = addWord(crc, ptr); // Bytes 5,6
msgQueue.nAckLength = SLIP(AckBuff, ptr - AckBuff);
return ;

¥

/I Telemetry/Calibration packet formatting function
void TSK_DoPacketFormat(void)
{
tLong temp;
/l Start the data insertion point just past the MCF
char *ptr = DataBuff + 3;

/I There are six non-variable characters in the packet
/I They are: Status1, Status2, and the subcommutated
/l VREF Frame data

/I NOTE: This is used for determining the length of the
/l data/status string for CRC calculation

tByte data_length = 6;

tWord crc;
CmdCode = 0;

/I Pre-populate the values that are always the same

DataBuff[0] = 0x11; // Destination address (host(ARCS) = 0x11)
DataBuff[1] = 0x56; I/ Source address (INSTRUMENT CONTROL = 0x56)
DataBuff[2] = MCF.value; // Message Control Field =

Approved for Public Release; Distribution is unlimited

59

/I OxXAO for most NSP telemetry packets

/I Reset the "ACK" bit if set
Ack = 0;

/I Insert the frame counter
ptr = addWord(FrameCounter, ptr);

/I Insert the two status bytes
ptr = addChar(Status1.value, ptr);
ptr = addChar(Status2.value, ptr);

/Il Insert the (active) dosimeter channels
if (dos1_pwr) { // Dosimeter #1 active
if (ContentlD == CAL_CONTENT)
temp = cal_post[0] - cal_pre[O0];

else
temp = dos[0] - dos_zero[0];
if (temp > 0x80000000) temp = 0O;
ptr = addLong(temp, ptr);
data_length += 4;
¥
if (dos2_pwr) { // Dosimeter #2 active
if (ContentlD == CAL_CONTENT)
temp = cal_post[1] - cal_pre[1];
else
temp = dos[1] - dos_zero[1];
if (temp > 0x80000000) temp = 0O;
ptr = addLong(temp, ptr);
data_length += 4;

}
if (dos3_pwr) { // Dosimeter #3 active
if (ContentlD == CAL_CONTENT)
temp = cal_post[2] - cal_pre[2];
else
temp = dos[2] - dos_zero[2];
if (temp > 0x80000000) temp = 0O;
ptr = addLong(temp, ptr);
data_length += 4;
}

/I Reset the flag that indicates that we are in the process of

/l formatting the buffer string (this prevents ADC sampling during
/I this period). NOTE: NEED TO CHECK WITH CHAD ON THIS.
/I Note: This time should be very short, since most of the time

/I spent in this whole routine is spent later in the CRC calcs.

Approved for Public Release; Distribution is unlimited

60

TelemetryTick = 0;
if (ContentlD == CAL_CONTENT) {
VrefFrame = 0;

}

/I Insert the subcommutated power supply and temperature readings
if (VrefFrame == 0x00) { /I VREF Frame: 15V & 5V
ptr = addWord(ps_15V, ptr);
ptr = addWord(ps_5V, ptr);
} else if(VrefFrame == 0x01) { // VREF Frame: Temp1 & Temp2
ptr = addWord(temps[0], ptr);
ptr = addWord(temps[1], ptr);
} else if(VrefFrame == 0x02) { // VREF Frame: Temp3 & DOS1 run time
ptr = addWord(temps[2], ptr);
ptr = addWord(dos_livetime[0], ptr);
} else {
ptr = addWord(dos_livetime[1], ptr); // VREF Frame: DOS2/3 run time
ptr = addWord(dos_livetime[2], ptr); // VREF Frame: DOS2/3 run time

}

/I Insert the calculated CRC for the data packet
/I Note: The fields included in this calculation are
/I Status 1 1

/l Status 2 1

I Dosimeter1 0,4
/l Dosimeter2 0,4
/l Dosimeter3 0,4
I VREF Frame 4

n e

/l Total Length: {6, 10, 14, or 18}

I

crc = crc16((char *)(DataBuff+5), data_length);
ptr = addWord(crc, ptr);

Il Insert the message CRC

/I Note: The fields included in this calculation are
Il Dest address 1

Il Src Address 1

/l Msg Ctrl Field 1

Il Frame Counter 2

Il Status 1 1

Il Status 2 1

Il Dosimeter1 0,4
Il Dosimeter2 0,4
Il Dosimeter3 0,4
Il VREF Frame 4

Approved for Public Release; Distribution is unlimited

61

I Payload CRC 2

n e

I Total Length: {13, 17, 21, or 25}

I

crc = crc16((char *)(DataBuff), data_length + 7);
ptr = addWord(crc, ptr);

/I Set UART send data pointer to the start of the message
pXmitPtr = DataBuff;

FrameCounter++;
/I Increment the frame counter and advance the VREF Frame (in Status2)
// Only want to do hourly dump or CAL once then return to normal

/* Hourly updates are not used at this point - we are sending total dose
values each packet now...

if (ContentlD == HOUR_CONTENT) ContentID = NORM_CONTENT;

*/

if (ContentlD == CAL_CONTENT)

ContentID = NORM_CONTENT;
VrefFrame = 0;
} else {
VrefFrame++;
Iif (VrefFrame == 3) VrefFrame = 0O;

}

/I Reset CmdFound and CmdValid bits
CmdFound =0;
CmdValid = 0;

/I 'Escape' any FEND or FESC characters in the data/validation packet
/I and, if transmit is enabled, return the result (the length of the
/I SLIP'ed data frame). If transmit is disabled, returning a 0 will not
/I cause any characters to be sent.
if (TxEnable) {
msgQueue.nDatalLength = SLIP(DataBuff, ptr - DataBuff);
}
}

char *addChar(char ch, const char *ptr)

{
char *p = ptr;

*(p) = ch;
return p+1;

}

Approved for Public Release; Distribution is unlimited

62

char *addWord(tWord val, const char *ptr)

/I Need to add a word to the data, but safely (using addChar() method)
return addChar((char)(val >> 8), addChar((char)(val & 0x00FF), ptr));

}

char *addLong(tLong val, const char *ptr)

/l Need to add a long (4 bytes) to the data, but safely (using addWord() method)
return addWord((tWord)(val >> 16), addWord((tWord)(val & 0xO000FFFF), ptr));

}
tByte TimeToXmitTelemetry(void)

/ Math: With a tick timer of 2 ms, there are 500 interrupts
/l per second. Therefore, we multiply the number of
/I seconds in the interval by 500 and convert it to hex.
if (Status1.fields.SampleMode == 0) {
/I Low-speed (every 10 minutes)
if (GSE ==1){
if (TickCount >= (tLong)0x000009C4) { // 2,500 (5 secs)
TickCount = 0;
return 1;
} else {
return O;

} else {
if (TickCount >= (tLong)0x000493E0) { // 300,000 (10 mins)
TickCount = 0;
return 1;
} else {
return O;

}
}

} else {
/I High-speed (every 2 minutes)
if (GSE ==1){
if (TickCount >= (tLong)0xO00000FA) { // 250 (0.5 secs)
TickCount = 0;
return 1;
} else {
return O;

} else {
if (TickCount >= (tLong)0xO000EAG60) { // 60,000 (2 mins)
TickCount = 0;

Approved for Public Release; Distribution is unlimited

63

return 1;
} else {
return O;

}
}
}
}

void QueueWaitingMessage(void)
{
if (msgQueue.nDatalLength != 0) {
pXmitPtr = DataBuff;
XmitLength = msgQueue.nDatalLength;
msgQueue.nDatalLength = 0O;
} else if (msgQueue.nAckLength != 0) {
pXmitPtr = AckBuff;
XmitLength = msgQueue.nAckLength;
msgQueue.nAckLength = 0;

}
}

#ifdef DEBUG

void FakeData(void)

{
FrameCounter = 0x0000;
Status1.value = 0x55;
Status2.value = OxE1;
dos1_pwr =1,
dos2_pwr = 1;
dos3 pwr =1,
dos[0] = 0x00000000;
dos[1] = 0x00000000;
dos[2] = 0x00000000;
ps_15V = 0x7FCO;
ps_5V = 0x7FDB;
temps[0] = 3115;
temps[1] = 3002;
temps[2] = 2975;

}

#endif // __ DEBUG__

Approved for Public Release; Distribution is unlimited

64

SIO.C File Reference
#include "main.h"

Macros

o #define TBUF_SIZE 16 /*** Must be one of these powers of 2
(2,4,8,16,32,64,128) ***/

o #define RBUF_SIZE 16 /*** Must be one of these powers of 2

(2,4,8,16,32,64,128) ***/
o #define TBUF_SPACE idata [*** Memory space where the transmit buffer
resides ***/

o #define RBUF_SPACE idata /*** Memory space where the receive buffer
resides ***/

o #define CTRL_SPACE data [*** Memory space for the buffer indexes ***/

Macro Definition Documentation

#define CTRL_SPACE data [*** Memory space for the buffer indexes ***/

Definition at line 26 of file SIO.C.
#define RBUF_SIZE 16 [*** Must be one of these powers of 2
(2,4,8,16,32,64,128) ***/

Definition at line 21 of file SIO.C.
#define RBUF_SPACE idata [*** Memory space where the receive buffer
resides ***/

Definition at line 24 of file S10.C.
#define TBUF_SIZE 16 [*** Must be one of these powers of 2
(2,4,8,16,32,64,128) ***/

Definition at line 20 of file SIO.C.
#define TBUF_SPACE idata [** Memory space where the transmit buffer

resides ***/

Definition at line 23 of file SIO.C.

Approved for Public Release; Distribution is unlimited

65

/*
SI0.C: Serial Communication Routines.

Copyright 1995-2002 KEIL Software, Inc.
*/

#include "main.h"

/*
Notes:

The length of the receive and transmit buffers must be a power of 2.
Each buffer has a next_in and a next_out index.
If next_in = next_out, the buffer is empty.

(next_in - next_out) % buffer_size = the number of characters in the buffer.

*/
#define TBUF_SIZE 16 /*** Must be one of these powers of 2
(2,4,8,16,32,64,128) ***/
#define RBUF_SIZE 16 /*** Must be one of these powers of 2

(2,4,8,16,32,64,128) ***/
#define TBUF_SPACE idata /*** Memory space where the transmit buffer resides
***/

#define RBUF_SPACE idata /*** Memory space where the receive buffer resides

***/

#define CTRL_SPACE data /*** Memory space for the buffer indexes ***/
#define INTERRUPT_UART 4 [*** Interrupt level for Serial Port

/*

*/

#if TBUF_SIZE < 2

#error TBUF_SIZE is too small. It must be larger than 1.
#elif TBUF_SIZE > 128

#error TBUF_SIZE is too large. It must be smaller than 129.
#elif (TBUF_SIZE & (TBUF_SIZE-1)) != 0)

#error TBUF_SIZE must be a power of 2.

#endif

#if RBUF_SIZE < 2
#error RBUF_SIZE is too small. It must be larger than 1.
#elif RBUF_SIZE > 128

Approved for Public Release; Distribution is unlimited

66

#error RBUF_SIZE is too large. It must be smaller than 129.
#elif (RBUF_SIZE & (RBUF_SIZE-1)) I=0)

#error RBUF_SIZE must be a power of 2.

#endif

/*
*/

static TBUF_SPACE unsigned char tbuf [TBUF_SIZE];
static RBUF_SPACE unsigned char rbuf [RBUF_SIZE];

static CTRL_SPACE unsigned char t_in = 0;
static CTRL_SPACE unsigned char t_out = 0;

static CTRL_SPACE unsigned char r_in = 0;
static CTRL_SPACE unsigned char r_out = 0;

static bit ti_restart =0; /* NZ if TI=1 is required */

/*

*/

static void com_isr (void) interrupt INTERRUPT_UART
{
/*
Received data interrupt.

5
if (RI 1= 0)

{
Rl =0;

if ((r_in - r_out) & ~(RBUF_SIZE-1)) == 0)

{
rouf [r_in & (RBUF_SIZE-1)] = SBUF;
r_in++;

}
}

/*
Transmitted data interrupt.

if (TI 1= 0)

{
Tl =0;

if (t_in 1= t_out)
{

Approved for Public Release; Distribution is unlimited

67

SBUF = tbuf [t_out & (TBUF_SIZE-1)];
t_out++;
ti_restart = 0;

}

else

{

ti_restart = 1;
Y
}

}
/*

*/

#pragma disable

void com_initialize (void)
{
/*
Setup TIMER1 to generate the proper baud rate.

*/

com_baudrate (1200); /[Was 1200

/*
Clear com buffer indexes.

¥/

t in=0;
t out=0;

r in=0;
r out=0;

/*
Setup serial port registers.

*/

SMO = 0; SM1 =1; /* serial port MODE 1 */
SM2 = 0;

REN =1, /* enable serial receiver */

RI = 0; /* clear receiver interrupt */
Tl =0; /[* clear transmit interrupt */
ti_restart = 1;

ES =1; /* enable serial interrupts */
PS =0; /* set serial interrupts to low priority */

}

Approved for Public Release; Distribution is unlimited

68

/*

*/

#pragma disable

void com_baudrate (
unsigned baudrate)

{
/*
Clear transmit interrupt and buffer.
*/
Tl =0; [* clear transmit interrupt */
t in=0; [* empty transmit buffer */
t out=0;
/*
Set timer 1 up as a baud rate generator.
*/
TR1 =0; [* stop timer 1 */
ET1=0; /* disable timer 1 interrupt */

PCON |= 0x80; /* 0x80=SMOD: set serial baudrate doubler */

TMOD &= ~0xFO0; /* clear timer 1 mode bits */
TMOD |= 0x20; /* put timer 1 into MODE 2 */

TH1 = (unsigned char) (256 - (16129000 / (16L * 12L * baudrate)));

TR1 =1; [* start timer 1 */
}

/*

*/

#pragma disable

char com_putchar (
unsigned char c)

{
/*
If the buffer is full, return an error value.
*/
if (com_tbuflen () >= TBUF_SIZE)
return (-1);
/*

Add the data to the transmit buffer. If the
transmit interrupt is disabled, then enable it.

Approved for Public Release; Distribution is unlimited

69

*/

tbuf [t_in & (TBUF_SIZE - 1)] = c;
t in++;

if (ti_restart)
{
ti_restart = 0;
TI=1; /* generate transmit interrupt */

}

return (0);

}
/*

*/

#pragma disable
int com_getchar (void)

if (com_rbuflen () == 0)
return (-1);

return (rbuf [(r_out++) & (RBUF_SIZE - 1)]);
}

/*

*/

#pragma disable

unsigned char com_rbuflen (void)

{

return (r_in - r_out);

}
/*

*/

#pragma disable
unsigned char com_tbuflen (void)

{

return (t_in - t_out);

}

Approved for Public Release; Distribution is unlimited

70

List of Abbreviations, Symbols, and Acronyms

AFRL — Air Force Research Laboratory

COSMIAC — Configurable Space Microsystems Innovations and Applications Center
EEPROM — Electrically Erasable Programmable Read-Only Memory
LEO — Low Earth Orbit

MIT — Massachusetts Institute of Technology

NASA — National Aeronautics and Space Administration

RHAS - Radiation Hazard Assessment System

SPA — Space Plug-and-play Architecture

SDM - Satellite Data Module

SSM — Satellite System Module

UNM — University of New Mexico

UNP — University Nanosat Program

Approved for Public Release; Distribution is unlimited

71

DISTRIBUTION LIST
DTIC/OCP
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir, VA 22060-6218 1cy

AFRL/RVIL
Kirtland AFB, NM 87117-5776 2 cys

Official Record Copy
AFRL/RVSE/Keith Avery 1cy

Approved for Public Release; Distribution is unlimited

72

